8,788 research outputs found

    A methodology for using nonlinear aerodynamics in aeroservoelastic analysis and design

    Get PDF
    A methodology is presented for using the Volterra-Wiener theory of nonlinear systems in aeroservoelastic (ASE) analyses and design. The theory is applied to the development of nonlinear aerodynamic response models that can be defined in state-space form and are, therefore, appropriate for use in modern control theory. The theory relies on the identification of nonlinear kernels that can be used to predict the response of a nonlinear system due to an arbitrary input. A numerical kernel identification technique, based on unit impulse responses, is presented and applied to a simple bilinear, single-input single-output (SISO) system. The linear kernel (unit impulse response) and the nonlinear second-order kernel of the system are numerically-identified and compared with the exact, analytically-defined and linear and second-order kernels. This kernel identification technique is then applied to the CAP-TSD (Computational Aeroelasticity Program-Transonic Small Disturbance) code for identification of the linear and second-order kernels of a NACA64A010 rectangular wing undergoing pitch at M = 0.5, M = 8.5 (transonic), and M = 0.93 (transonic). Results presented demonstrate the feasibility of this approach for use with nonlinear, unsteady aerodynamic responses

    The effects of aeroelastic deformation on the unaugmented stopped-rotor dynamics of an X-Wing aircraft

    Get PDF
    A new design concept in the development of VTOL aircraft with high forward flight speed capability is that of the X-Wing, a stiff, bearingless helicopter rotor system which can be stopped in flight and the blades used as two forward-swept and two aft-swept wings. Because of the usual configuration in the fixed-wing mode, there is a high potential for aeroelastic divergence or flutter and coupling of blade vibration modes with rigid-body modes. An aeroelastic stability analysis of an X-Wing configuration aircraft was undertaken to determine if these problems could exist. This paper reports on the results of dynamic stability analyses in the lateral and longitudinal directions including the vehicle rigid-body and flexible modes. A static aeroelastic analysis using the normal vibration mode equations of motion was performed to determine the cause of a loss of longitudinal static margin with increasing airspeed. This loss of static margin was found to be due to aeroelastic washin of the forward-swept blades and washout of the aft-swept blades moving the aircraft aerodynamic center forward of the center of gravity. This phenomenon is likely to be generic to X-Wing aircraft

    Using transonic small disturbance theory for predicting the aeroelastic stability of a flexible wind-tunnel model

    Get PDF
    The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code, developed at the NASA - Langley Research Center, is applied to the Active Flexible Wing (AFW) wind tunnel model for prediction of the model's transonic aeroelastic behavior. Static aeroelastic solutions using CAP-TSD are computed. Dynamic (flutter) analyses are then performed as perturbations about the static aeroelastic deformations of the AFW. The accuracy of the static aeroelastic procedure is investigated by comparing analytical results to those from previous AFW wind tunnel experiments. Dynamic results are presented in the form of root loci at different Mach numbers for a heavy gas and air. The resultant flutter boundaries for both gases are also presented. The effects of viscous damping and angle-of-attack, on the flutter boundary in air, are presented as well

    AEROM: NASA's Unsteady Aerodynamic and Aeroelastic Reduced-Order Modeling Software

    Get PDF
    The origins, development, implementation, and application of AEROM, NASA's patented reduced-order modeling (ROM) software, are presented. Full computational fluid dynamic (CFD) aeroelastic solutions and ROM aeroelastic solutions, computed at several Mach numbers using the NASA FUN3D CFD code, are presented in the form of root locus plots in order to better reveal the aeroelastic root migrations with increasing dynamic pressure. The method and software have been applied successfully to several con figurations including the Lockheed-Martin N+2 supersonic configuration and the Royal Institute of Technology (KTH, Sweden) generic wind-tunnel model, among others. The software has been released to various organizations with applications that include CFD-based aeroelastic analyses and the rapid modeling of high- fidelity dynamic stability derivatives. Recent results obtained from the application of the method to the AGARD 445.6 wing will be presented that reveal several interesting insights

    Method of performing computational aeroelastic analyses

    Get PDF
    Computational aeroelastic analyses typically use a mathematical model for the structural modes of a flexible structure and a nonlinear aerodynamic model that can generate a plurality of unsteady aerodynamic responses based on the structural modes for conditions defining an aerodynamic condition of the flexible structure. In the present invention, a linear state-space model is generated using a single execution of the nonlinear aerodynamic model for all of the structural modes where a family of orthogonal functions is used as the inputs. Then, static and dynamic aeroelastic solutions are generated using computational interaction between the mathematical model and the linear state-space model for a plurality of periodic points in time

    Discrete-time linear and nonlinear aerodynamic impulse responses for efficient CFD analyses

    Get PDF
    This dissertation discusses the mathematical existence and the numerical identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner\u27s function), forced harmonic responses (such as Theodorsen\u27s function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This will establish the aerodynamic discrete-time impulse response function as the most fundamental and computationally efficient aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this dissertation help to unify the understanding of classical two-dimensional continuous-time theories with modern three-dimensional, discrete-time theories.;Nonlinear aerodynamic impulse responses are identified using the Volterra theory of nonlinear systems. The theory is described and a discrete-time kernel identification technique is presented. The kernel identification technique is applied to a simple nonlinear circuit for illustrative purposes. The method is then applied to the nonlinear viscous Burger\u27s equation as an example of an application to a simple CFD model. Finally, the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code.;Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time systems

    Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

    Get PDF
    This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Tbeodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modem three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems

    Projetos de modelagem matemática e sistemas lineares: contribuiçôes para a formaçâo de professores de matemática

    Get PDF
    O trabalho investigou as contribuições da elaboração de projetos de modelagem matemática para a formação de professores de matemática, a partir do desenvolvimento de projetos envolvendo sistemas lineares. A pesquisa de campo foi realizada com alunos de licenciatura em Matemática. As considerações finais apontam que o desenvolvimento de projetos contribui para formar um professor crítico e reflexivo, ao proporcionar odesafio de realizar a junção entre a teoria matemática com a prática da sala de aula e também contribui para transformar a sala de aula num ambiente propício à geração e construção coletiva de conhecimentos
    • …
    corecore